Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{\sqrt{5}+\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}-\sqrt{3}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Pūrua \sqrt{5}. Pūrua \sqrt{3}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{2}
Tangohia te 3 i te 5, ka 2.
\frac{\sqrt{15}\sqrt{5}-\sqrt{15}\sqrt{3}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{15} ki te \sqrt{5}-\sqrt{3}.
\frac{\sqrt{5}\sqrt{3}\sqrt{5}-\sqrt{15}\sqrt{3}}{2}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
\frac{5\sqrt{3}-\sqrt{15}\sqrt{3}}{2}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{5\sqrt{3}-\sqrt{3}\sqrt{5}\sqrt{3}}{2}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
\frac{5\sqrt{3}-3\sqrt{5}}{2}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.