Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{14}\times \frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
\sqrt{14}\times \frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\sqrt{14}\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\sqrt{14}\times \frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{14}\sqrt{2}}{2}
Tuhia te \sqrt{14}\times \frac{\sqrt{2}}{2} hei hautanga kotahi.
\frac{\sqrt{2}\sqrt{7}\sqrt{2}}{2}
Tauwehea te 14=2\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2\times 7} hei hua o ngā pūtake rua \sqrt{2}\sqrt{7}.
\frac{2\sqrt{7}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\sqrt{7}
Me whakakore te 2 me te 2.