Aromātai
\frac{3\sqrt{3}}{4}\approx 1.299038106
Tohaina
Kua tāruatia ki te papatopenga
\frac{3\sqrt{15}}{\sqrt{80}}
Tauwehea te 135=3^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 15} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{15}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{15}}{4\sqrt{5}}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\frac{3\sqrt{15}\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{15}}{4\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{3\sqrt{15}\sqrt{5}}{4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{3\sqrt{5}\sqrt{3}\sqrt{5}}{4\times 5}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
\frac{3\times 5\sqrt{3}}{4\times 5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{3\times 5\sqrt{3}}{20}
Whakareatia te 4 ki te 5, ka 20.
\frac{15\sqrt{3}}{20}
Whakareatia te 3 ki te 5, ka 15.
\frac{3}{4}\sqrt{3}
Whakawehea te 15\sqrt{3} ki te 20, kia riro ko \frac{3}{4}\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}