Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\sqrt{15}}{\sqrt{80}}
Tauwehea te 135=3^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 15} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{15}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{15}}{4\sqrt{5}}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\frac{3\sqrt{15}\sqrt{5}}{4\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{15}}{4\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{3\sqrt{15}\sqrt{5}}{4\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{3\sqrt{5}\sqrt{3}\sqrt{5}}{4\times 5}
Tauwehea te 15=5\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5\times 3} hei hua o ngā pūtake rua \sqrt{5}\sqrt{3}.
\frac{3\times 5\sqrt{3}}{4\times 5}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\frac{3\times 5\sqrt{3}}{20}
Whakareatia te 4 ki te 5, ka 20.
\frac{15\sqrt{3}}{20}
Whakareatia te 3 ki te 5, ka 15.
\frac{3}{4}\sqrt{3}
Whakawehea te 15\sqrt{3} ki te 20, kia riro ko \frac{3}{4}\sqrt{3}.