Aromātai
\frac{45\sqrt{157}}{314}\approx 1.79569549
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{13.5}{\frac{4}{3}\times 3.14}}
Tuhia te \frac{\frac{13.5}{\frac{4}{3}}}{3.14} hei hautanga kotahi.
\sqrt{\frac{13.5}{\frac{4}{3}\times \frac{157}{50}}}
Me tahuri ki tau ā-ira 3.14 ki te hautau \frac{314}{100}. Whakahekea te hautanga \frac{314}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{13.5}{\frac{4\times 157}{3\times 50}}}
Me whakarea te \frac{4}{3} ki te \frac{157}{50} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{13.5}{\frac{628}{150}}}
Mahia ngā whakarea i roto i te hautanga \frac{4\times 157}{3\times 50}.
\sqrt{\frac{13.5}{\frac{314}{75}}}
Whakahekea te hautanga \frac{628}{150} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{13.5\times \frac{75}{314}}
Whakawehe 13.5 ki te \frac{314}{75} mā te whakarea 13.5 ki te tau huripoki o \frac{314}{75}.
\sqrt{\frac{27}{2}\times \frac{75}{314}}
Me tahuri ki tau ā-ira 13.5 ki te hautau \frac{135}{10}. Whakahekea te hautanga \frac{135}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\sqrt{\frac{27\times 75}{2\times 314}}
Me whakarea te \frac{27}{2} ki te \frac{75}{314} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{2025}{628}}
Mahia ngā whakarea i roto i te hautanga \frac{27\times 75}{2\times 314}.
\frac{\sqrt{2025}}{\sqrt{628}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2025}{628}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2025}}{\sqrt{628}}.
\frac{45}{\sqrt{628}}
Tātaitia te pūtakerua o 2025 kia tae ki 45.
\frac{45}{2\sqrt{157}}
Tauwehea te 628=2^{2}\times 157. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 157} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{157}. Tuhia te pūtakerua o te 2^{2}.
\frac{45\sqrt{157}}{2\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{45}{2\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{45\sqrt{157}}{2\times 157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{45\sqrt{157}}{314}
Whakareatia te 2 ki te 157, ka 314.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}