Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{128}}{\sqrt{27}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{128}{27}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{128}}{\sqrt{27}}.
\frac{8\sqrt{2}}{\sqrt{27}}
Tauwehea te 128=8^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 2} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{2}. Tuhia te pūtakerua o te 8^{2}.
\frac{8\sqrt{2}}{3\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{8\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{8\sqrt{2}}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{8\sqrt{2}\sqrt{3}}{3\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{8\sqrt{6}}{3\times 3}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{8\sqrt{6}}{9}
Whakareatia te 3 ki te 3, ka 9.