Aromātai
-\frac{140608\sqrt{2}}{125}\approx -1590.797924625
Tohaina
Kua tāruatia ki te papatopenga
8\sqrt{2}\left(-\frac{17576}{125}\right)
Tauwehea te 128=8^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{8^{2}\times 2} hei hua o ngā pūtake rua \sqrt{8^{2}}\sqrt{2}. Tuhia te pūtakerua o te 8^{2}.
\frac{8\left(-17576\right)}{125}\sqrt{2}
Tuhia te 8\left(-\frac{17576}{125}\right) hei hautanga kotahi.
\frac{-140608}{125}\sqrt{2}
Whakareatia te 8 ki te -17576, ka -140608.
-\frac{140608}{125}\sqrt{2}
Ka taea te hautanga \frac{-140608}{125} te tuhi anō ko -\frac{140608}{125} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}