Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{3}-\sqrt{3}+\sqrt{\frac{1}{3}}-\sqrt[3]{27}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\sqrt{3}+\sqrt{\frac{1}{3}}-\sqrt[3]{27}
Pahekotia te 2\sqrt{3} me -\sqrt{3}, ka \sqrt{3}.
\sqrt{3}+\frac{\sqrt{1}}{\sqrt{3}}-\sqrt[3]{27}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{3}}.
\sqrt{3}+\frac{1}{\sqrt{3}}-\sqrt[3]{27}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\sqrt{3}+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\sqrt[3]{27}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\sqrt{3}+\frac{\sqrt{3}}{3}-\sqrt[3]{27}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4}{3}\sqrt{3}-\sqrt[3]{27}
Pahekotia te \sqrt{3} me \frac{\sqrt{3}}{3}, ka \frac{4}{3}\sqrt{3}.
\frac{4}{3}\sqrt{3}-3
Tātaitia te \sqrt[3]{27} kia tae ki 3.