Whakaoti mō x
x=1
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{1-x}=\sqrt{2}-\sqrt{1+x}
Me tango \sqrt{1+x} mai i ngā taha e rua o te whārite.
\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1-x=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
1-x=\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2}-\sqrt{1+x}\right)^{2}.
1-x=2-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
1-x=2-2\sqrt{2}\sqrt{1+x}+1+x
Tātaihia te \sqrt{1+x} mā te pū o 2, kia riro ko 1+x.
1-x=3-2\sqrt{2}\sqrt{1+x}+x
Tāpirihia te 2 ki te 1, ka 3.
1-x-\left(3+x\right)=-2\sqrt{2}\sqrt{1+x}
Me tango 3+x mai i ngā taha e rua o te whārite.
1-x-3-x=-2\sqrt{2}\sqrt{1+x}
Hei kimi i te tauaro o 3+x, kimihia te tauaro o ia taurangi.
-2-x-x=-2\sqrt{2}\sqrt{1+x}
Tangohia te 3 i te 1, ka -2.
-2-2x=-2\sqrt{2}\sqrt{1+x}
Pahekotia te -x me -x, ka -2x.
\left(-2-2x\right)^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4+8x+4x^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-2-2x\right)^{2}.
4+8x+4x^{2}=\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Whakarohaina te \left(-2\sqrt{2}\sqrt{1+x}\right)^{2}.
4+8x+4x^{2}=4\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
4+8x+4x^{2}=4\times 2\left(\sqrt{1+x}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
4+8x+4x^{2}=8\left(\sqrt{1+x}\right)^{2}
Whakareatia te 4 ki te 2, ka 8.
4+8x+4x^{2}=8\left(1+x\right)
Tātaihia te \sqrt{1+x} mā te pū o 2, kia riro ko 1+x.
4+8x+4x^{2}=8+8x
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 1+x.
4+8x+4x^{2}-8=8x
Tangohia te 8 mai i ngā taha e rua.
-4+8x+4x^{2}=8x
Tangohia te 8 i te 4, ka -4.
-4+8x+4x^{2}-8x=0
Tangohia te 8x mai i ngā taha e rua.
-4+4x^{2}=0
Pahekotia te 8x me -8x, ka 0.
-1+x^{2}=0
Whakawehea ngā taha e rua ki te 4.
\left(x-1\right)\left(x+1\right)=0
Whakaarohia te -1+x^{2}. Tuhia anō te -1+x^{2} hei x^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
Hei kimi otinga whārite, me whakaoti te x-1=0 me te x+1=0.
\sqrt{1-1}+\sqrt{1+1}=\sqrt{2}
Whakakapia te 1 mō te x i te whārite \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=1 kua ngata te whārite.
\sqrt{1-\left(-1\right)}+\sqrt{1-1}=\sqrt{2}
Whakakapia te -1 mō te x i te whārite \sqrt{1-x}+\sqrt{1+x}=\sqrt{2}.
2^{\frac{1}{2}}=2^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-1 kua ngata te whārite.
x=1 x=-1
Rārangihia ngā rongoā katoa o \sqrt{1-x}=-\sqrt{x+1}+\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}