Whakaoti mō x
x=\frac{\sqrt{3}}{2}\approx 0.866025404
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{1+x}\right)^{2}=\left(1+\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1+x=\left(1+\sqrt{1-x}\right)^{2}
Tātaihia te \sqrt{1+x} mā te pū o 2, kia riro ko 1+x.
1+x=1+2\sqrt{1-x}+\left(\sqrt{1-x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{1-x}\right)^{2}.
1+x=1+2\sqrt{1-x}+1-x
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
1+x=2+2\sqrt{1-x}-x
Tāpirihia te 1 ki te 1, ka 2.
1+x-\left(2-x\right)=2\sqrt{1-x}
Me tango 2-x mai i ngā taha e rua o te whārite.
1+x-2+x=2\sqrt{1-x}
Hei kimi i te tauaro o 2-x, kimihia te tauaro o ia taurangi.
-1+x+x=2\sqrt{1-x}
Tangohia te 2 i te 1, ka -1.
-1+2x=2\sqrt{1-x}
Pahekotia te x me x, ka 2x.
\left(-1+2x\right)^{2}=\left(2\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1-4x+4x^{2}=\left(2\sqrt{1-x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-1+2x\right)^{2}.
1-4x+4x^{2}=2^{2}\left(\sqrt{1-x}\right)^{2}
Whakarohaina te \left(2\sqrt{1-x}\right)^{2}.
1-4x+4x^{2}=4\left(\sqrt{1-x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1-4x+4x^{2}=4\left(1-x\right)
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
1-4x+4x^{2}=4-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 1-x.
1-4x+4x^{2}+4x=4
Me tāpiri te 4x ki ngā taha e rua.
1+4x^{2}=4
Pahekotia te -4x me 4x, ka 0.
4x^{2}=4-1
Tangohia te 1 mai i ngā taha e rua.
4x^{2}=3
Tangohia te 1 i te 4, ka 3.
x^{2}=\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{\sqrt{3}}{2} x=-\frac{\sqrt{3}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Whakakapia te \frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{\sqrt{3}}{2} kua ngata te whārite.
\sqrt{1-\frac{\sqrt{3}}{2}}=1+\sqrt{1-\left(-\frac{\sqrt{3}}{2}\right)}
Whakakapia te -\frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
-\left(\frac{1}{2}-\frac{1}{2}\times 3^{\frac{1}{2}}\right)=\frac{3}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\frac{\sqrt{3}}{2} kāore e ngata ana ki te whārite.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Whakakapia te \frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{\sqrt{3}}{2} kua ngata te whārite.
x=\frac{\sqrt{3}}{2}
Ko te whārite \sqrt{x+1}=\sqrt{1-x}+1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}