Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{1+x}\right)^{2}=\left(1+\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1+x=\left(1+\sqrt{1-x}\right)^{2}
Tātaihia te \sqrt{1+x} mā te pū o 2, kia riro ko 1+x.
1+x=1+2\sqrt{1-x}+\left(\sqrt{1-x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+\sqrt{1-x}\right)^{2}.
1+x=1+2\sqrt{1-x}+1-x
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
1+x=2+2\sqrt{1-x}-x
Tāpirihia te 1 ki te 1, ka 2.
1+x-\left(2-x\right)=2\sqrt{1-x}
Me tango 2-x mai i ngā taha e rua o te whārite.
1+x-2+x=2\sqrt{1-x}
Hei kimi i te tauaro o 2-x, kimihia te tauaro o ia taurangi.
-1+x+x=2\sqrt{1-x}
Tangohia te 2 i te 1, ka -1.
-1+2x=2\sqrt{1-x}
Pahekotia te x me x, ka 2x.
\left(-1+2x\right)^{2}=\left(2\sqrt{1-x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
1-4x+4x^{2}=\left(2\sqrt{1-x}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-1+2x\right)^{2}.
1-4x+4x^{2}=2^{2}\left(\sqrt{1-x}\right)^{2}
Whakarohaina te \left(2\sqrt{1-x}\right)^{2}.
1-4x+4x^{2}=4\left(\sqrt{1-x}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
1-4x+4x^{2}=4\left(1-x\right)
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
1-4x+4x^{2}=4-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 1-x.
1-4x+4x^{2}+4x=4
Me tāpiri te 4x ki ngā taha e rua.
1+4x^{2}=4
Pahekotia te -4x me 4x, ka 0.
4x^{2}=4-1
Tangohia te 1 mai i ngā taha e rua.
4x^{2}=3
Tangohia te 1 i te 4, ka 3.
x^{2}=\frac{3}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{\sqrt{3}}{2} x=-\frac{\sqrt{3}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Whakakapia te \frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{\sqrt{3}}{2} kua ngata te whārite.
\sqrt{1-\frac{\sqrt{3}}{2}}=1+\sqrt{1-\left(-\frac{\sqrt{3}}{2}\right)}
Whakakapia te -\frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
-\left(\frac{1}{2}-\frac{1}{2}\times 3^{\frac{1}{2}}\right)=\frac{3}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=-\frac{\sqrt{3}}{2} kāore e ngata ana ki te whārite.
\sqrt{1+\frac{\sqrt{3}}{2}}=1+\sqrt{1-\frac{\sqrt{3}}{2}}
Whakakapia te \frac{\sqrt{3}}{2} mō te x i te whārite \sqrt{1+x}=1+\sqrt{1-x}.
\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 3^{\frac{1}{2}}
Whakarūnātia. Ko te uara x=\frac{\sqrt{3}}{2} kua ngata te whārite.
x=\frac{\sqrt{3}}{2}
Ko te whārite \sqrt{x+1}=\sqrt{1-x}+1 he rongoā ahurei.