Whakaoti mō x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\sqrt{ 1 \div 2+1 \div 4+1 \div 8+1 \div 16+1 \div 2x } =x
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt{\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\left(\sqrt{\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\sqrt{\frac{3}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tāpirihia te 2 ki te 1, ka 3.
\left(\sqrt{\frac{6}{8}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{3}{4} me \frac{1}{8} ki te hautau me te tautūnga 8.
\left(\sqrt{\frac{6+1}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tā te mea he rite te tauraro o \frac{6}{8} me \frac{1}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\sqrt{\frac{7}{8}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tāpirihia te 6 ki te 1, ka 7.
\left(\sqrt{\frac{14}{16}+\frac{1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Ko te maha noa iti rawa atu o 8 me 16 ko 16. Me tahuri \frac{7}{8} me \frac{1}{16} ki te hautau me te tautūnga 16.
\left(\sqrt{\frac{14+1}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tā te mea he rite te tauraro o \frac{14}{16} me \frac{1}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(\sqrt{\frac{15}{16}+\frac{1}{2}x}\right)^{2}=x^{2}
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{16}+\frac{1}{2}x=x^{2}
Tātaihia te \sqrt{\frac{15}{16}+\frac{1}{2}x} mā te pū o 2, kia riro ko \frac{15}{16}+\frac{1}{2}x.
\frac{15}{16}+\frac{1}{2}x-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+\frac{1}{2}x+\frac{15}{16}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, \frac{1}{2} mō b, me \frac{15}{16} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\left(-1\right)\times \frac{15}{16}}}{2\left(-1\right)}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+4\times \frac{15}{16}}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1+15}{4}}}{2\left(-1\right)}
Whakareatia 4 ki te \frac{15}{16}.
x=\frac{-\frac{1}{2}±\sqrt{4}}{2\left(-1\right)}
Tāpiri \frac{1}{4} ki te \frac{15}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{1}{2}±2}{2\left(-1\right)}
Tuhia te pūtakerua o te 4.
x=\frac{-\frac{1}{2}±2}{-2}
Whakareatia 2 ki te -1.
x=\frac{\frac{3}{2}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±2}{-2} ina he tāpiri te ±. Tāpiri -\frac{1}{2} ki te 2.
x=-\frac{3}{4}
Whakawehe \frac{3}{2} ki te -2.
x=-\frac{\frac{5}{2}}{-2}
Nā, me whakaoti te whārite x=\frac{-\frac{1}{2}±2}{-2} ina he tango te ±. Tango 2 mai i -\frac{1}{2}.
x=\frac{5}{4}
Whakawehe -\frac{5}{2} ki te -2.
x=-\frac{3}{4} x=\frac{5}{4}
Kua oti te whārite te whakatau.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\left(-\frac{3}{4}\right)}=-\frac{3}{4}
Whakakapia te -\frac{3}{4} mō te x i te whārite \sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x.
\frac{3}{4}=-\frac{3}{4}
Whakarūnātia. Ko te uara x=-\frac{3}{4} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
\sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}\times \frac{5}{4}}=\frac{5}{4}
Whakakapia te \frac{5}{4} mō te x i te whārite \sqrt{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{2}x}=x.
\frac{5}{4}=\frac{5}{4}
Whakarūnātia. Ko te uara x=\frac{5}{4} kua ngata te whārite.
x=\frac{5}{4}
Ko te whārite \sqrt{\frac{x}{2}+\frac{15}{16}}=x he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}