Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{2}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{1}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\sqrt{\frac{2+1}{4}+\frac{1}{8}+\frac{1}{16}}
Tā te mea he rite te tauraro o \frac{2}{4} me \frac{1}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{3}{4}+\frac{1}{8}+\frac{1}{16}}
Tāpirihia te 2 ki te 1, ka 3.
\sqrt{\frac{6}{8}+\frac{1}{8}+\frac{1}{16}}
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri \frac{3}{4} me \frac{1}{8} ki te hautau me te tautūnga 8.
\sqrt{\frac{6+1}{8}+\frac{1}{16}}
Tā te mea he rite te tauraro o \frac{6}{8} me \frac{1}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{7}{8}+\frac{1}{16}}
Tāpirihia te 6 ki te 1, ka 7.
\sqrt{\frac{14}{16}+\frac{1}{16}}
Ko te maha noa iti rawa atu o 8 me 16 ko 16. Me tahuri \frac{7}{8} me \frac{1}{16} ki te hautau me te tautūnga 16.
\sqrt{\frac{14+1}{16}}
Tā te mea he rite te tauraro o \frac{14}{16} me \frac{1}{16}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{15}{16}}
Tāpirihia te 14 ki te 1, ka 15.
\frac{\sqrt{15}}{\sqrt{16}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{15}{16}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{15}}{\sqrt{16}}.
\frac{\sqrt{15}}{4}
Tātaitia te pūtakerua o 16 kia tae ki 4.