Aromātai
-1
Tauwehe
-1
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{0\times 25}-6\sqrt{\frac{1}{36}}
Whakareatia te 0 ki te 16, ka 0.
\sqrt{0}-6\sqrt{\frac{1}{36}}
Whakareatia te 0 ki te 25, ka 0.
0-6\sqrt{\frac{1}{36}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
0-6\times \frac{1}{6}
Tuhia anō te pūtake rua o te whakawehenga \frac{1}{36} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{36}}. Tuhia te pūtakerua o te taurunga me te tauraro.
0-1
Whakareatia -6 ki te \frac{1}{6}.
-1
Tangohia te 1 i te 0, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}