Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{184}{90000}}
Whakarohaina te \frac{0.0184}{9} mā te whakarea i te taurunga me te tauraro ki te 10000.
\sqrt{\frac{23}{11250}}
Whakahekea te hautanga \frac{184}{90000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\sqrt{23}}{\sqrt{11250}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{23}{11250}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{23}}{\sqrt{11250}}.
\frac{\sqrt{23}}{75\sqrt{2}}
Tauwehea te 11250=75^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{75^{2}\times 2} hei hua o ngā pūtake rua \sqrt{75^{2}}\sqrt{2}. Tuhia te pūtakerua o te 75^{2}.
\frac{\sqrt{23}\sqrt{2}}{75\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{23}}{75\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{23}\sqrt{2}}{75\times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\sqrt{46}}{75\times 2}
Hei whakarea \sqrt{23} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{46}}{150}
Whakareatia te 75 ki te 2, ka 150.