Whakaoti mō x
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{-2x+5}\right)^{2}=\left(2x-3\right)^{2}
Pūruatia ngā taha e rua o te whārite.
-2x+5=\left(2x-3\right)^{2}
Tātaihia te \sqrt{-2x+5} mā te pū o 2, kia riro ko -2x+5.
-2x+5=4x^{2}-12x+9
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
-2x+5-4x^{2}=-12x+9
Tangohia te 4x^{2} mai i ngā taha e rua.
-2x+5-4x^{2}+12x=9
Me tāpiri te 12x ki ngā taha e rua.
10x+5-4x^{2}=9
Pahekotia te -2x me 12x, ka 10x.
10x+5-4x^{2}-9=0
Tangohia te 9 mai i ngā taha e rua.
10x-4-4x^{2}=0
Tangohia te 9 i te 5, ka -4.
5x-2-2x^{2}=0
Whakawehea ngā taha e rua ki te 2.
-2x^{2}+5x-2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=-2\left(-2\right)=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=4 b=1
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-2x^{2}+4x\right)+\left(x-2\right)
Tuhia anō te -2x^{2}+5x-2 hei \left(-2x^{2}+4x\right)+\left(x-2\right).
2x\left(-x+2\right)-\left(-x+2\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(-x+2\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 2x-1=0.
\sqrt{-2\times 2+5}=2\times 2-3
Whakakapia te 2 mō te x i te whārite \sqrt{-2x+5}=2x-3.
1=1
Whakarūnātia. Ko te uara x=2 kua ngata te whārite.
\sqrt{-2\times \frac{1}{2}+5}=2\times \frac{1}{2}-3
Whakakapia te \frac{1}{2} mō te x i te whārite \sqrt{-2x+5}=2x-3.
2=-2
Whakarūnātia. Ko te uara x=\frac{1}{2} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=2
Ko te whārite \sqrt{5-2x}=2x-3 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}