Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{-\frac{1}{2}+1}
Ka taea te hautanga \frac{-1}{2} te tuhi anō ko -\frac{1}{2} mā te tango i te tohu tōraro.
\sqrt{-\frac{1}{2}+\frac{2}{2}}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\sqrt{\frac{-1+2}{2}}
Tā te mea he rite te tauraro o -\frac{1}{2} me \frac{2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{1}{2}}
Tāpirihia te -1 ki te 2, ka 1.
\frac{\sqrt{1}}{\sqrt{2}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
\frac{1}{\sqrt{2}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.