Whakaoti mō x
x = \frac{24}{5} = 4\frac{4}{5} = 4.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{x^{2}+4}=13-\sqrt{\left(12-x\right)^{2}+9}
Me tango \sqrt{\left(12-x\right)^{2}+9} mai i ngā taha e rua o te whārite.
\sqrt{x^{2}+4}=13-\sqrt{144-24x+x^{2}+9}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(12-x\right)^{2}.
\sqrt{x^{2}+4}=13-\sqrt{153-24x+x^{2}}
Tāpirihia te 144 ki te 9, ka 153.
\left(\sqrt{x^{2}+4}\right)^{2}=\left(13-\sqrt{153-24x+x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
x^{2}+4=\left(13-\sqrt{153-24x+x^{2}}\right)^{2}
Tātaihia te \sqrt{x^{2}+4} mā te pū o 2, kia riro ko x^{2}+4.
x^{2}+4=169-26\sqrt{153-24x+x^{2}}+\left(\sqrt{153-24x+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(13-\sqrt{153-24x+x^{2}}\right)^{2}.
x^{2}+4=169-26\sqrt{153-24x+x^{2}}+153-24x+x^{2}
Tātaihia te \sqrt{153-24x+x^{2}} mā te pū o 2, kia riro ko 153-24x+x^{2}.
x^{2}+4=322-26\sqrt{153-24x+x^{2}}-24x+x^{2}
Tāpirihia te 169 ki te 153, ka 322.
x^{2}+4-\left(322-24x+x^{2}\right)=-26\sqrt{153-24x+x^{2}}
Me tango 322-24x+x^{2} mai i ngā taha e rua o te whārite.
x^{2}+4-322+24x-x^{2}=-26\sqrt{153-24x+x^{2}}
Hei kimi i te tauaro o 322-24x+x^{2}, kimihia te tauaro o ia taurangi.
x^{2}-318+24x-x^{2}=-26\sqrt{153-24x+x^{2}}
Tangohia te 322 i te 4, ka -318.
-318+24x=-26\sqrt{153-24x+x^{2}}
Pahekotia te x^{2} me -x^{2}, ka 0.
\left(-318+24x\right)^{2}=\left(-26\sqrt{153-24x+x^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
101124-15264x+576x^{2}=\left(-26\sqrt{153-24x+x^{2}}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-318+24x\right)^{2}.
101124-15264x+576x^{2}=\left(-26\right)^{2}\left(\sqrt{153-24x+x^{2}}\right)^{2}
Whakarohaina te \left(-26\sqrt{153-24x+x^{2}}\right)^{2}.
101124-15264x+576x^{2}=676\left(\sqrt{153-24x+x^{2}}\right)^{2}
Tātaihia te -26 mā te pū o 2, kia riro ko 676.
101124-15264x+576x^{2}=676\left(153-24x+x^{2}\right)
Tātaihia te \sqrt{153-24x+x^{2}} mā te pū o 2, kia riro ko 153-24x+x^{2}.
101124-15264x+576x^{2}=103428-16224x+676x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 676 ki te 153-24x+x^{2}.
101124-15264x+576x^{2}-103428=-16224x+676x^{2}
Tangohia te 103428 mai i ngā taha e rua.
-2304-15264x+576x^{2}=-16224x+676x^{2}
Tangohia te 103428 i te 101124, ka -2304.
-2304-15264x+576x^{2}+16224x=676x^{2}
Me tāpiri te 16224x ki ngā taha e rua.
-2304+960x+576x^{2}=676x^{2}
Pahekotia te -15264x me 16224x, ka 960x.
-2304+960x+576x^{2}-676x^{2}=0
Tangohia te 676x^{2} mai i ngā taha e rua.
-2304+960x-100x^{2}=0
Pahekotia te 576x^{2} me -676x^{2}, ka -100x^{2}.
-100x^{2}+960x-2304=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-960±\sqrt{960^{2}-4\left(-100\right)\left(-2304\right)}}{2\left(-100\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -100 mō a, 960 mō b, me -2304 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-960±\sqrt{921600-4\left(-100\right)\left(-2304\right)}}{2\left(-100\right)}
Pūrua 960.
x=\frac{-960±\sqrt{921600+400\left(-2304\right)}}{2\left(-100\right)}
Whakareatia -4 ki te -100.
x=\frac{-960±\sqrt{921600-921600}}{2\left(-100\right)}
Whakareatia 400 ki te -2304.
x=\frac{-960±\sqrt{0}}{2\left(-100\right)}
Tāpiri 921600 ki te -921600.
x=-\frac{960}{2\left(-100\right)}
Tuhia te pūtakerua o te 0.
x=-\frac{960}{-200}
Whakareatia 2 ki te -100.
x=\frac{24}{5}
Whakahekea te hautanga \frac{-960}{-200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
\sqrt{\left(\frac{24}{5}\right)^{2}+4}+\sqrt{\left(12-\frac{24}{5}\right)^{2}+9}=13
Whakakapia te \frac{24}{5} mō te x i te whārite \sqrt{x^{2}+4}+\sqrt{\left(12-x\right)^{2}+9}=13.
13=13
Whakarūnātia. Ko te uara x=\frac{24}{5} kua ngata te whārite.
x=\frac{24}{5}
Ko te whārite \sqrt{x^{2}+4}=-\sqrt{x^{2}-24x+153}+13 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}