Aromātai
\frac{5\sqrt{10}}{3}\approx 5.270462767
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt{ { 5 }^{ 2 } + { \left( \frac{ 5 }{ 3 } \right) }^{ 2 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{25+\left(\frac{5}{3}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\sqrt{25+\frac{25}{9}}
Tātaihia te \frac{5}{3} mā te pū o 2, kia riro ko \frac{25}{9}.
\sqrt{\frac{225}{9}+\frac{25}{9}}
Me tahuri te 25 ki te hautau \frac{225}{9}.
\sqrt{\frac{225+25}{9}}
Tā te mea he rite te tauraro o \frac{225}{9} me \frac{25}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{250}{9}}
Tāpirihia te 225 ki te 25, ka 250.
\frac{\sqrt{250}}{\sqrt{9}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{250}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{250}}{\sqrt{9}}.
\frac{5\sqrt{10}}{\sqrt{9}}
Tauwehea te 250=5^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 10} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{10}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{10}}{3}
Tātaitia te pūtakerua o 9 kia tae ki 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}