Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{25+\left(\frac{5}{3}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\sqrt{25+\frac{25}{9}}
Tātaihia te \frac{5}{3} mā te pū o 2, kia riro ko \frac{25}{9}.
\sqrt{\frac{225}{9}+\frac{25}{9}}
Me tahuri te 25 ki te hautau \frac{225}{9}.
\sqrt{\frac{225+25}{9}}
Tā te mea he rite te tauraro o \frac{225}{9} me \frac{25}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{250}{9}}
Tāpirihia te 225 ki te 25, ka 250.
\frac{\sqrt{250}}{\sqrt{9}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{250}{9}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{250}}{\sqrt{9}}.
\frac{5\sqrt{10}}{\sqrt{9}}
Tauwehea te 250=5^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 10} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{10}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{10}}{3}
Tātaitia te pūtakerua o 9 kia tae ki 3.