Aromātai
35
Tauwehe
5\times 7
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{16+10^{2}+28^{2}}+\sqrt{15^{2}+20^{2}-300\times 2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
\sqrt{16+100+28^{2}}+\sqrt{15^{2}+20^{2}-300\times 2}
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
\sqrt{116+28^{2}}+\sqrt{15^{2}+20^{2}-300\times 2}
Tāpirihia te 16 ki te 100, ka 116.
\sqrt{116+784}+\sqrt{15^{2}+20^{2}-300\times 2}
Tātaihia te 28 mā te pū o 2, kia riro ko 784.
\sqrt{900}+\sqrt{15^{2}+20^{2}-300\times 2}
Tāpirihia te 116 ki te 784, ka 900.
30+\sqrt{15^{2}+20^{2}-300\times 2}
Tātaitia te pūtakerua o 900 kia tae ki 30.
30+\sqrt{225+20^{2}-300\times 2}
Tātaihia te 15 mā te pū o 2, kia riro ko 225.
30+\sqrt{225+400-300\times 2}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
30+\sqrt{625-300\times 2}
Tāpirihia te 225 ki te 400, ka 625.
30+\sqrt{625-600}
Whakareatia te 300 ki te 2, ka 600.
30+\sqrt{25}
Tangohia te 600 i te 625, ka 25.
30+5
Tātaitia te pūtakerua o 25 kia tae ki 5.
35
Tāpirihia te 30 ki te 5, ka 35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}