Aromātai
20\left(\sqrt{26}+\sqrt{29}+2\sqrt{10}+5\sqrt{5}\right)\approx 559.781590571
Tauwehe
20 {(\sqrt{26} + \sqrt{29} + 2 \sqrt{10} + 5 \sqrt{5})} = 559.781590571
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{400+60^{2}}+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
\sqrt{400+3600}+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 60 mā te pū o 2, kia riro ko 3600.
\sqrt{4000}+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 400 ki te 3600, ka 4000.
20\sqrt{10}+\sqrt{20^{2}+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tauwehea te 4000=20^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 10} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{10}. Tuhia te pūtakerua o te 20^{2}.
20\sqrt{10}+\sqrt{400+40^{2}}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
20\sqrt{10}+\sqrt{400+1600}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
20\sqrt{10}+\sqrt{2000}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 400 ki te 1600, ka 2000.
20\sqrt{10}+20\sqrt{5}+\sqrt{40^{2}+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tauwehea te 2000=20^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 5} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{5}. Tuhia te pūtakerua o te 20^{2}.
20\sqrt{10}+20\sqrt{5}+\sqrt{1600+80^{2}}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
20\sqrt{10}+20\sqrt{5}+\sqrt{1600+6400}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 80 mā te pū o 2, kia riro ko 6400.
20\sqrt{10}+20\sqrt{5}+\sqrt{8000}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 1600 ki te 6400, ka 8000.
20\sqrt{10}+20\sqrt{5}+40\sqrt{5}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tauwehea te 8000=40^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{40^{2}\times 5} hei hua o ngā pūtake rua \sqrt{40^{2}}\sqrt{5}. Tuhia te pūtakerua o te 40^{2}.
20\sqrt{10}+60\sqrt{5}+\sqrt{100^{2}+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Pahekotia te 20\sqrt{5} me 40\sqrt{5}, ka 60\sqrt{5}.
20\sqrt{10}+60\sqrt{5}+\sqrt{10000+20^{2}}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
20\sqrt{10}+60\sqrt{5}+\sqrt{10000+400}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
20\sqrt{10}+60\sqrt{5}+\sqrt{10400}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 10000 ki te 400, ka 10400.
20\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{20^{2}+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tauwehea te 10400=20^{2}\times 26. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 26} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{26}. Tuhia te pūtakerua o te 20^{2}.
20\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{400+60^{2}}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
20\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{400+3600}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 60 mā te pū o 2, kia riro ko 3600.
20\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{4000}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 400 ki te 3600, ka 4000.
20\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{10}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Tauwehea te 4000=20^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 10} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{10}. Tuhia te pūtakerua o te 20^{2}.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{40^{2}+100^{2}}+\sqrt{40^{2}+80^{2}}
Pahekotia te 20\sqrt{10} me 20\sqrt{10}, ka 40\sqrt{10}.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{1600+100^{2}}+\sqrt{40^{2}+80^{2}}
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{1600+10000}+\sqrt{40^{2}+80^{2}}
Tātaihia te 100 mā te pū o 2, kia riro ko 10000.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+\sqrt{11600}+\sqrt{40^{2}+80^{2}}
Tāpirihia te 1600 ki te 10000, ka 11600.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{29}+\sqrt{40^{2}+80^{2}}
Tauwehea te 11600=20^{2}\times 29. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 29} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{29}. Tuhia te pūtakerua o te 20^{2}.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{29}+\sqrt{1600+80^{2}}
Tātaihia te 40 mā te pū o 2, kia riro ko 1600.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{29}+\sqrt{1600+6400}
Tātaihia te 80 mā te pū o 2, kia riro ko 6400.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{29}+\sqrt{8000}
Tāpirihia te 1600 ki te 6400, ka 8000.
40\sqrt{10}+60\sqrt{5}+20\sqrt{26}+20\sqrt{29}+40\sqrt{5}
Tauwehea te 8000=40^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{40^{2}\times 5} hei hua o ngā pūtake rua \sqrt{40^{2}}\sqrt{5}. Tuhia te pūtakerua o te 40^{2}.
40\sqrt{10}+100\sqrt{5}+20\sqrt{26}+20\sqrt{29}
Pahekotia te 60\sqrt{5} me 40\sqrt{5}, ka 100\sqrt{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}