Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\sqrt{2^{3}\times 3-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 2 i te 3 kia riro ai te 1.
\sqrt{8\times 3-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\sqrt{24-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 8 ki te 3, ka 24.
\sqrt{24-6\left(21-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 7 ki te 3, ka 21.
\sqrt{24-6\left(21-2\times 9\right)+3^{2}\times 2^{3}-11^{1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{24-6\left(21-18\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 2 ki te 9, ka 18.
\sqrt{24-6\times 3+3^{2}\times 2^{3}-11^{1}}
Tangohia te 18 i te 21, ka 3.
\sqrt{24-18+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 6 ki te 3, ka 18.
\sqrt{6+3^{2}\times 2^{3}-11^{1}}
Tangohia te 18 i te 24, ka 6.
\sqrt{6+9\times 2^{3}-11^{1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{6+9\times 8-11^{1}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\sqrt{6+72-11^{1}}
Whakareatia te 9 ki te 8, ka 72.
\sqrt{78-11^{1}}
Tāpirihia te 6 ki te 72, ka 78.
\sqrt{78-11}
Tātaihia te 11 mā te pū o 1, kia riro ko 11.
\sqrt{67}
Tangohia te 11 i te 78, ka 67.