Aromātai
\sqrt{67}\approx 8.185352772
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{2^{3}\times 3-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 2 i te 3 kia riro ai te 1.
\sqrt{8\times 3-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\sqrt{24-6\left(7\times 3-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 8 ki te 3, ka 24.
\sqrt{24-6\left(21-2\times 3^{2}\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 7 ki te 3, ka 21.
\sqrt{24-6\left(21-2\times 9\right)+3^{2}\times 2^{3}-11^{1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{24-6\left(21-18\right)+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 2 ki te 9, ka 18.
\sqrt{24-6\times 3+3^{2}\times 2^{3}-11^{1}}
Tangohia te 18 i te 21, ka 3.
\sqrt{24-18+3^{2}\times 2^{3}-11^{1}}
Whakareatia te 6 ki te 3, ka 18.
\sqrt{6+3^{2}\times 2^{3}-11^{1}}
Tangohia te 18 i te 24, ka 6.
\sqrt{6+9\times 2^{3}-11^{1}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{6+9\times 8-11^{1}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\sqrt{6+72-11^{1}}
Whakareatia te 9 ki te 8, ka 72.
\sqrt{78-11^{1}}
Tāpirihia te 6 ki te 72, ka 78.
\sqrt{78-11}
Tātaihia te 11 mā te pū o 1, kia riro ko 11.
\sqrt{67}
Tangohia te 11 i te 78, ka 67.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}