Aromātai
18\sqrt{4330}\approx 1184.449239098
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{342^{2}+1134^{2}}
Tāpirihia te 27 ki te 315, ka 342.
\sqrt{116964+1134^{2}}
Tātaihia te 342 mā te pū o 2, kia riro ko 116964.
\sqrt{116964+1285956}
Tātaihia te 1134 mā te pū o 2, kia riro ko 1285956.
\sqrt{1402920}
Tāpirihia te 116964 ki te 1285956, ka 1402920.
18\sqrt{4330}
Tauwehea te 1402920=18^{2}\times 4330. Tuhia anō te pūtake rua o te hua \sqrt{18^{2}\times 4330} hei hua o ngā pūtake rua \sqrt{18^{2}}\sqrt{4330}. Tuhia te pūtakerua o te 18^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}