Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{17^{2}\left(\sqrt{3}\right)^{2}+\left(17\sqrt{3}\right)^{2}}
Whakarohaina te \left(17\sqrt{3}\right)^{2}.
\sqrt{289\left(\sqrt{3}\right)^{2}+\left(17\sqrt{3}\right)^{2}}
Tātaihia te 17 mā te pū o 2, kia riro ko 289.
\sqrt{289\times 3+\left(17\sqrt{3}\right)^{2}}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{867+\left(17\sqrt{3}\right)^{2}}
Whakareatia te 289 ki te 3, ka 867.
\sqrt{867+17^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(17\sqrt{3}\right)^{2}.
\sqrt{867+289\left(\sqrt{3}\right)^{2}}
Tātaihia te 17 mā te pū o 2, kia riro ko 289.
\sqrt{867+289\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\sqrt{867+867}
Whakareatia te 289 ki te 3, ka 867.
\sqrt{1734}
Tāpirihia te 867 ki te 867, ka 1734.
17\sqrt{6}
Tauwehea te 1734=17^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{17^{2}\times 6} hei hua o ngā pūtake rua \sqrt{17^{2}}\sqrt{6}. Tuhia te pūtakerua o te 17^{2}.