Aromātai
\frac{\sqrt{31}+15}{2}\approx 10.283882181
Tauwehe
\frac{\sqrt{31} + 15}{2} = 10.283882181415011
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{81}{4}+6^{2}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Tātaihia te \frac{9}{2} mā te pū o 2, kia riro ko \frac{81}{4}.
\sqrt{\frac{81}{4}+36}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\sqrt{\frac{81}{4}+\frac{144}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Me tahuri te 36 ki te hautau \frac{144}{4}.
\sqrt{\frac{81+144}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Tā te mea he rite te tauraro o \frac{81}{4} me \frac{144}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{225}{4}}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Tāpirihia te 81 ki te 144, ka 225.
\frac{15}{2}+\sqrt{\left(\frac{9}{2}\right)^{2}-\frac{12\times 2+9}{2}+4}
Tuhia anō te pūtake rua o te whakawehenga \frac{225}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{225}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{12\times 2+9}{2}+4}
Tātaihia te \frac{9}{2} mā te pū o 2, kia riro ko \frac{81}{4}.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{24+9}{2}+4}
Whakareatia te 12 ki te 2, ka 24.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{33}{2}+4}
Tāpirihia te 24 ki te 9, ka 33.
\frac{15}{2}+\sqrt{\frac{81}{4}-\frac{66}{4}+4}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{81}{4} me \frac{33}{2} ki te hautau me te tautūnga 4.
\frac{15}{2}+\sqrt{\frac{81-66}{4}+4}
Tā te mea he rite te tauraro o \frac{81}{4} me \frac{66}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{15}{2}+\sqrt{\frac{15}{4}+4}
Tangohia te 66 i te 81, ka 15.
\frac{15}{2}+\sqrt{\frac{15}{4}+\frac{16}{4}}
Me tahuri te 4 ki te hautau \frac{16}{4}.
\frac{15}{2}+\sqrt{\frac{15+16}{4}}
Tā te mea he rite te tauraro o \frac{15}{4} me \frac{16}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{15}{2}+\sqrt{\frac{31}{4}}
Tāpirihia te 15 ki te 16, ka 31.
\frac{15}{2}+\frac{\sqrt{31}}{\sqrt{4}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{31}{4}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{31}}{\sqrt{4}}.
\frac{15}{2}+\frac{\sqrt{31}}{2}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{15+\sqrt{31}}{2}
Tā te mea he rite te tauraro o \frac{15}{2} me \frac{\sqrt{31}}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}