Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\sqrt{\left(-10-\frac{1}{8}\right)\left(-\frac{1}{2}\right)}}
Whakareatia te -5 ki te 2, ka -10.
\sqrt{\sqrt{\left(-\frac{80}{8}-\frac{1}{8}\right)\left(-\frac{1}{2}\right)}}
Me tahuri te -10 ki te hautau -\frac{80}{8}.
\sqrt{\sqrt{\frac{-80-1}{8}\left(-\frac{1}{2}\right)}}
Tā te mea he rite te tauraro o -\frac{80}{8} me \frac{1}{8}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\sqrt{-\frac{81}{8}\left(-\frac{1}{2}\right)}}
Tangohia te 1 i te -80, ka -81.
\sqrt{\sqrt{\frac{-81\left(-1\right)}{8\times 2}}}
Me whakarea te -\frac{81}{8} ki te -\frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\sqrt{\frac{81}{16}}}
Mahia ngā whakarea i roto i te hautanga \frac{-81\left(-1\right)}{8\times 2}.
\sqrt{\frac{9}{4}}
Tuhia anō te pūtake rua o te whakawehenga \frac{81}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{3}{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.