Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\left(\frac{4+1}{2}-\frac{1}{6}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Whakareatia te 2 ki te 2, ka 4.
\sqrt{\left(\frac{5}{2}-\frac{1}{6}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\sqrt{\left(\frac{15}{6}-\frac{1}{6}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{5}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\sqrt{\left(\frac{15-1}{6}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Tā te mea he rite te tauraro o \frac{15}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\left(\frac{14}{6}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Tangohia te 1 i te 15, ka 14.
\sqrt{\left(\frac{7}{3}+0\times 2222222222\right)\times 9-\frac{11}{4}}
Whakahekea te hautanga \frac{14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\left(\frac{7}{3}+0\right)\times 9-\frac{11}{4}}
Whakareatia te 0 ki te 2222222222, ka 0.
\sqrt{\frac{7}{3}\times 9-\frac{11}{4}}
Tāpirihia te \frac{7}{3} ki te 0, ka \frac{7}{3}.
\sqrt{\frac{7\times 9}{3}-\frac{11}{4}}
Tuhia te \frac{7}{3}\times 9 hei hautanga kotahi.
\sqrt{\frac{63}{3}-\frac{11}{4}}
Whakareatia te 7 ki te 9, ka 63.
\sqrt{21-\frac{11}{4}}
Whakawehea te 63 ki te 3, kia riro ko 21.
\sqrt{\frac{84}{4}-\frac{11}{4}}
Me tahuri te 21 ki te hautau \frac{84}{4}.
\sqrt{\frac{84-11}{4}}
Tā te mea he rite te tauraro o \frac{84}{4} me \frac{11}{4}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{73}{4}}
Tangohia te 11 i te 84, ka 73.
\frac{\sqrt{73}}{\sqrt{4}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{73}{4}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{73}}{\sqrt{4}}.
\frac{\sqrt{73}}{2}
Tātaitia te pūtakerua o 4 kia tae ki 2.