Aromātai
\frac{9}{2}=4.5
Tauwehe
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\left(\frac{4+1}{2}-\frac{1}{6}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Whakareatia te 2 ki te 2, ka 4.
\sqrt{\left(\frac{5}{2}-\frac{1}{6}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Tāpirihia te 4 ki te 1, ka 5.
\sqrt{\left(\frac{15}{6}-\frac{1}{6}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{5}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\sqrt{\left(\frac{15-1}{6}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Tā te mea he rite te tauraro o \frac{15}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\left(\frac{14}{6}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Tangohia te 1 i te 15, ka 14.
\sqrt{\left(\frac{7}{3}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Whakahekea te hautanga \frac{14}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\left(\frac{21}{9}+\frac{2}{9}\right)\times 9-\frac{11}{4}}
Ko te maha noa iti rawa atu o 3 me 9 ko 9. Me tahuri \frac{7}{3} me \frac{2}{9} ki te hautau me te tautūnga 9.
\sqrt{\frac{21+2}{9}\times 9-\frac{11}{4}}
Tā te mea he rite te tauraro o \frac{21}{9} me \frac{2}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\sqrt{\frac{23}{9}\times 9-\frac{11}{4}}
Tāpirihia te 21 ki te 2, ka 23.
\sqrt{23-\frac{11}{4}}
Me whakakore te 9 me te 9.
\sqrt{\frac{92}{4}-\frac{11}{4}}
Me tahuri te 23 ki te hautau \frac{92}{4}.
\sqrt{\frac{92-11}{4}}
Tā te mea he rite te tauraro o \frac{92}{4} me \frac{11}{4}, me tango rāua mā te tango i ō raua taurunga.
\sqrt{\frac{81}{4}}
Tangohia te 11 i te 92, ka 81.
\frac{9}{2}
Tuhia anō te pūtake rua o te whakawehenga \frac{81}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{81}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}