Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{98}}{\sqrt{981}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{98}{981}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{98}}{\sqrt{981}}.
\frac{7\sqrt{2}}{\sqrt{981}}
Tauwehea te 98=7^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{7^{2}\times 2} hei hua o ngā pūtake rua \sqrt{7^{2}}\sqrt{2}. Tuhia te pūtakerua o te 7^{2}.
\frac{7\sqrt{2}}{3\sqrt{109}}
Tauwehea te 981=3^{2}\times 109. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 109} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{109}. Tuhia te pūtakerua o te 3^{2}.
\frac{7\sqrt{2}\sqrt{109}}{3\left(\sqrt{109}\right)^{2}}
Whakangāwaritia te tauraro o \frac{7\sqrt{2}}{3\sqrt{109}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{109}.
\frac{7\sqrt{2}\sqrt{109}}{3\times 109}
Ko te pūrua o \sqrt{109} ko 109.
\frac{7\sqrt{218}}{3\times 109}
Hei whakarea \sqrt{2} me \sqrt{109}, whakareatia ngā tau i raro i te pūtake rua.
\frac{7\sqrt{218}}{327}
Whakareatia te 3 ki te 109, ka 327.