Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{21}{20}}\sqrt{\frac{1}{3}}
Hei whakarea \sqrt{\frac{7}{5}} me \sqrt{\frac{3}{4}}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{7}{20}}
Hei whakarea \sqrt{\frac{21}{20}} me \sqrt{\frac{1}{3}}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{7}}{\sqrt{20}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{20}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{20}}.
\frac{\sqrt{7}}{2\sqrt{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{7}\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{2\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{\sqrt{7}\sqrt{5}}{2\times 5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\sqrt{35}}{2\times 5}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{35}}{10}
Whakareatia te 2 ki te 5, ka 10.