Aromātai
\frac{3\sqrt{42754090353225157}}{191657903}\approx 3.236557731
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{6411\times \frac{313161}{61213}}{3131}}
Whakawehe 6411 ki te \frac{3131}{\frac{313161}{61213}} mā te whakarea 6411 ki te tau huripoki o \frac{3131}{\frac{313161}{61213}}.
\sqrt{\frac{\frac{6411\times 313161}{61213}}{3131}}
Tuhia te 6411\times \frac{313161}{61213} hei hautanga kotahi.
\sqrt{\frac{\frac{2007675171}{61213}}{3131}}
Whakareatia te 6411 ki te 313161, ka 2007675171.
\sqrt{\frac{2007675171}{61213\times 3131}}
Tuhia te \frac{\frac{2007675171}{61213}}{3131} hei hautanga kotahi.
\sqrt{\frac{2007675171}{191657903}}
Whakareatia te 61213 ki te 3131, ka 191657903.
\frac{\sqrt{2007675171}}{\sqrt{191657903}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2007675171}{191657903}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2007675171}}{\sqrt{191657903}}.
\frac{3\sqrt{223075019}}{\sqrt{191657903}}
Tauwehea te 2007675171=3^{2}\times 223075019. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 223075019} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{223075019}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{223075019}\sqrt{191657903}}{\left(\sqrt{191657903}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{223075019}}{\sqrt{191657903}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{191657903}.
\frac{3\sqrt{223075019}\sqrt{191657903}}{191657903}
Ko te pūrua o \sqrt{191657903} ko 191657903.
\frac{3\sqrt{42754090353225157}}{191657903}
Hei whakarea \sqrt{223075019} me \sqrt{191657903}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}