Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{6411\times \frac{313161}{61213}}{3131}}
Whakawehe 6411 ki te \frac{3131}{\frac{313161}{61213}} mā te whakarea 6411 ki te tau huripoki o \frac{3131}{\frac{313161}{61213}}.
\sqrt{\frac{\frac{6411\times 313161}{61213}}{3131}}
Tuhia te 6411\times \frac{313161}{61213} hei hautanga kotahi.
\sqrt{\frac{\frac{2007675171}{61213}}{3131}}
Whakareatia te 6411 ki te 313161, ka 2007675171.
\sqrt{\frac{2007675171}{61213\times 3131}}
Tuhia te \frac{\frac{2007675171}{61213}}{3131} hei hautanga kotahi.
\sqrt{\frac{2007675171}{191657903}}
Whakareatia te 61213 ki te 3131, ka 191657903.
\frac{\sqrt{2007675171}}{\sqrt{191657903}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{2007675171}{191657903}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{2007675171}}{\sqrt{191657903}}.
\frac{3\sqrt{223075019}}{\sqrt{191657903}}
Tauwehea te 2007675171=3^{2}\times 223075019. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 223075019} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{223075019}. Tuhia te pūtakerua o te 3^{2}.
\frac{3\sqrt{223075019}\sqrt{191657903}}{\left(\sqrt{191657903}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{223075019}}{\sqrt{191657903}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{191657903}.
\frac{3\sqrt{223075019}\sqrt{191657903}}{191657903}
Ko te pūrua o \sqrt{191657903} ko 191657903.
\frac{3\sqrt{42754090353225157}}{191657903}
Hei whakarea \sqrt{223075019} me \sqrt{191657903}, whakareatia ngā tau i raro i te pūtake rua.