Aromātai
15\sqrt{5}\approx 33.541019662
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)}{2\times 2}\times \frac{5\sqrt{5}-2\sqrt{29}+\sqrt{41}}{2}\times \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2}}
Me whakarea te \frac{5\sqrt{5}+2\sqrt{29}+\sqrt{41}}{2} ki te \frac{-5\sqrt{5}+2\sqrt{29}+\sqrt{41}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)}{2\times 2\times 2}\times \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2}}
Me whakarea te \frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)}{2\times 2} ki te \frac{5\sqrt{5}-2\sqrt{29}+\sqrt{41}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{2\times 2\times 2\times 2}}
Me whakarea te \frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)}{2\times 2\times 2} ki te \frac{5\sqrt{5}+2\sqrt{29}-\sqrt{41}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{4\times 2\times 2}}
Whakareatia te 2 ki te 2, ka 4.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{8\times 2}}
Whakareatia te 4 ki te 2, ka 8.
\sqrt{\frac{\left(5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(-5\sqrt{5}+2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te 8 ki te 2, ka 16.
\sqrt{\frac{\left(-25\left(\sqrt{5}\right)^{2}+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 5\sqrt{5}+2\sqrt{29}+\sqrt{41} ki ia tau o -5\sqrt{5}+2\sqrt{29}+\sqrt{41}.
\sqrt{\frac{\left(-25\times 5+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Ko te pūrua o \sqrt{5} ko 5.
\sqrt{\frac{\left(-125+10\sqrt{29}\sqrt{5}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te -25 ki te 5, ka -125.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{5}\sqrt{41}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{29} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{205}-10\sqrt{5}\sqrt{29}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{5} me \sqrt{41}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-125+10\sqrt{145}+5\sqrt{205}-10\sqrt{145}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{5} me \sqrt{29}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-125+5\sqrt{205}+4\left(\sqrt{29}\right)^{2}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Pahekotia te 10\sqrt{145} me -10\sqrt{145}, ka 0.
\sqrt{\frac{\left(-125+5\sqrt{205}+4\times 29+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Ko te pūrua o \sqrt{29} ko 29.
\sqrt{\frac{\left(-125+5\sqrt{205}+116+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te 4 ki te 29, ka 116.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{29}\sqrt{41}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Tāpirihia te -125 ki te 116, ka -9.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{1189}-5\sqrt{41}\sqrt{5}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{29} me \sqrt{41}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-9+5\sqrt{205}+2\sqrt{1189}-5\sqrt{205}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{41} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-9+2\sqrt{1189}+2\sqrt{41}\sqrt{29}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Pahekotia te 5\sqrt{205} me -5\sqrt{205}, ka 0.
\sqrt{\frac{\left(-9+2\sqrt{1189}+2\sqrt{1189}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{41} me \sqrt{29}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(-9+4\sqrt{1189}+\left(\sqrt{41}\right)^{2}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Pahekotia te 2\sqrt{1189} me 2\sqrt{1189}, ka 4\sqrt{1189}.
\sqrt{\frac{\left(-9+4\sqrt{1189}+41\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Ko te pūrua o \sqrt{41} ko 41.
\sqrt{\frac{\left(32+4\sqrt{1189}\right)\left(5\sqrt{5}-2\sqrt{29}+\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Tāpirihia te -9 ki te 41, ka 32.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5}\sqrt{1189}-8\sqrt{29}\sqrt{1189}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 32+4\sqrt{1189} ki ia tau o 5\sqrt{5}-2\sqrt{29}+\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\sqrt{29}\sqrt{1189}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Hei whakarea \sqrt{5} me \sqrt{1189}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\sqrt{29}\sqrt{29}\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Tauwehea te 1189=29\times 41. Tuhia anō te pūtake rua o te hua \sqrt{29\times 41} hei hua o ngā pūtake rua \sqrt{29}\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-8\times 29\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te \sqrt{29} ki te \sqrt{29}, ka 29.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}+32\sqrt{41}+20\sqrt{5945}-232\sqrt{41}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te -8 ki te 29, ka -232.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\sqrt{1189}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Pahekotia te 32\sqrt{41} me -232\sqrt{41}, ka -200\sqrt{41}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\sqrt{41}\sqrt{29}\sqrt{41}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Tauwehea te 1189=41\times 29. Tuhia anō te pūtake rua o te hua \sqrt{41\times 29} hei hua o ngā pūtake rua \sqrt{41}\sqrt{29}.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+4\times 41\sqrt{29}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te \sqrt{41} ki te \sqrt{41}, ka 41.
\sqrt{\frac{\left(160\sqrt{5}-64\sqrt{29}-200\sqrt{41}+20\sqrt{5945}+164\sqrt{29}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Whakareatia te 4 ki te 41, ka 164.
\sqrt{\frac{\left(160\sqrt{5}+100\sqrt{29}-200\sqrt{41}+20\sqrt{5945}\right)\left(5\sqrt{5}+2\sqrt{29}-\sqrt{41}\right)}{16}}
Pahekotia te -64\sqrt{29} me 164\sqrt{29}, ka 100\sqrt{29}.
\sqrt{\frac{800\left(\sqrt{5}\right)^{2}+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 160\sqrt{5}+100\sqrt{29}-200\sqrt{41}+20\sqrt{5945} ki ia tau o 5\sqrt{5}+2\sqrt{29}-\sqrt{41}.
\sqrt{\frac{800\times 5+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Ko te pūrua o \sqrt{5} ko 5.
\sqrt{\frac{4000+320\sqrt{29}\sqrt{5}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te 800 ki te 5, ka 4000.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{5}\sqrt{41}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{29} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{205}+500\sqrt{5}\sqrt{29}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{5} me \sqrt{41}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{4000+320\sqrt{145}-160\sqrt{205}+500\sqrt{145}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{5} me \sqrt{29}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+200\left(\sqrt{29}\right)^{2}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Pahekotia te 320\sqrt{145} me 500\sqrt{145}, ka 820\sqrt{145}.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+200\times 29-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Ko te pūrua o \sqrt{29} ko 29.
\sqrt{\frac{4000+820\sqrt{145}-160\sqrt{205}+5800-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te 200 ki te 29, ka 5800.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{29}\sqrt{41}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Tāpirihia te 4000 ki te 5800, ka 9800.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{1189}-1000\sqrt{41}\sqrt{5}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{29} me \sqrt{41}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{9800+820\sqrt{145}-160\sqrt{205}-100\sqrt{1189}-1000\sqrt{205}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{41} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-100\sqrt{1189}-400\sqrt{41}\sqrt{29}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Pahekotia te -160\sqrt{205} me -1000\sqrt{205}, ka -1160\sqrt{205}.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-100\sqrt{1189}-400\sqrt{1189}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Hei whakarea \sqrt{41} me \sqrt{29}, whakareatia ngā tau i raro i te pūtake rua.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+200\left(\sqrt{41}\right)^{2}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Pahekotia te -100\sqrt{1189} me -400\sqrt{1189}, ka -500\sqrt{1189}.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+200\times 41+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Ko te pūrua o \sqrt{41} ko 41.
\sqrt{\frac{9800+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+8200+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te 200 ki te 41, ka 8200.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\sqrt{5945}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Tāpirihia te 9800 ki te 8200, ka 18000.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\sqrt{5}\sqrt{1189}\sqrt{5}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Tauwehea te 5945=5\times 1189. Tuhia anō te pūtake rua o te hua \sqrt{5\times 1189} hei hua o ngā pūtake rua \sqrt{5}\sqrt{1189}.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+100\times 5\sqrt{1189}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te \sqrt{5} ki te \sqrt{5}, ka 5.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}-500\sqrt{1189}+500\sqrt{1189}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te 100 ki te 5, ka 500.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\sqrt{5945}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Pahekotia te -500\sqrt{1189} me 500\sqrt{1189}, ka 0.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\sqrt{29}\sqrt{205}\sqrt{29}-20\sqrt{41}\sqrt{5945}}{16}}
Tauwehea te 5945=29\times 205. Tuhia anō te pūtake rua o te hua \sqrt{29\times 205} hei hua o ngā pūtake rua \sqrt{29}\sqrt{205}.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+40\times 29\sqrt{205}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te \sqrt{29} ki te \sqrt{29}, ka 29.
\sqrt{\frac{18000+820\sqrt{145}-1160\sqrt{205}+1160\sqrt{205}-20\sqrt{41}\sqrt{5945}}{16}}
Whakareatia te 40 ki te 29, ka 1160.
\sqrt{\frac{18000+820\sqrt{145}-20\sqrt{41}\sqrt{5945}}{16}}
Pahekotia te -1160\sqrt{205} me 1160\sqrt{205}, ka 0.
\sqrt{\frac{18000+820\sqrt{145}-20\sqrt{41}\sqrt{41}\sqrt{145}}{16}}
Tauwehea te 5945=41\times 145. Tuhia anō te pūtake rua o te hua \sqrt{41\times 145} hei hua o ngā pūtake rua \sqrt{41}\sqrt{145}.
\sqrt{\frac{18000+820\sqrt{145}-20\times 41\sqrt{145}}{16}}
Whakareatia te \sqrt{41} ki te \sqrt{41}, ka 41.
\sqrt{\frac{18000+820\sqrt{145}-820\sqrt{145}}{16}}
Whakareatia te -20 ki te 41, ka -820.
\sqrt{\frac{18000}{16}}
Pahekotia te 820\sqrt{145} me -820\sqrt{145}, ka 0.
\sqrt{1125}
Whakawehea te 18000 ki te 16, kia riro ko 1125.
15\sqrt{5}
Tauwehea te 1125=15^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{15^{2}\times 5} hei hua o ngā pūtake rua \sqrt{15^{2}}\sqrt{5}. Tuhia te pūtakerua o te 15^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}