Aromātai
1
Tauwehe
1
Pātaitai
Arithmetic
\sqrt{ \frac{ 5 }{ 3 } } \div \sqrt{ \frac{ 7 }{ 3 } } \times \sqrt{ \frac{ 7 }{ 5 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{7}{5}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{7}{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{7}{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{7}{5}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{7}{5}}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{15}\times 3}{3\sqrt{21}}\sqrt{\frac{7}{5}}
Whakawehe \frac{\sqrt{15}}{3} ki te \frac{\sqrt{21}}{3} mā te whakarea \frac{\sqrt{15}}{3} ki te tau huripoki o \frac{\sqrt{21}}{3}.
\frac{\sqrt{15}}{\sqrt{21}}\sqrt{\frac{7}{5}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
\frac{\sqrt{15}\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{\frac{7}{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{\sqrt{21}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{21}.
\frac{\sqrt{15}\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Ko te pūrua o \sqrt{21} ko 21.
\frac{\sqrt{315}}{21}\sqrt{\frac{7}{5}}
Hei whakarea \sqrt{15} me \sqrt{21}, whakareatia ngā tau i raro i te pūtake rua.
\frac{3\sqrt{35}}{21}\sqrt{\frac{7}{5}}
Tauwehea te 315=3^{2}\times 35. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 35} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{35}. Tuhia te pūtakerua o te 3^{2}.
\frac{1}{7}\sqrt{35}\sqrt{\frac{7}{5}}
Whakawehea te 3\sqrt{35} ki te 21, kia riro ko \frac{1}{7}\sqrt{35}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{7}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{7}}{\sqrt{5}}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{7}\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
\frac{1}{7}\sqrt{35}\times \frac{\sqrt{35}}{5}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{35}}{7\times 5}\sqrt{35}
Me whakarea te \frac{1}{7} ki te \frac{\sqrt{35}}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{35}}{35}\sqrt{35}
Whakareatia te 7 ki te 5, ka 35.
\frac{\sqrt{35}\sqrt{35}}{35}
Tuhia te \frac{\sqrt{35}}{35}\sqrt{35} hei hautanga kotahi.
\frac{35}{35}
Whakareatia te \sqrt{35} ki te \sqrt{35}, ka 35.
1
Whakawehea te 35 ki te 35, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}