Whakaoti mō x
x=84
Graph
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{4}{3}x+9}=11
Whakawehea ia wā o 4x+27 ki te 3, kia riro ko \frac{4}{3}x+9.
\frac{4}{3}x+9=121
Pūruatia ngā taha e rua o te whārite.
\frac{4}{3}x+9-9=121-9
Me tango 9 mai i ngā taha e rua o te whārite.
\frac{4}{3}x=121-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{4}{3}x=112
Tango 9 mai i 121.
\frac{\frac{4}{3}x}{\frac{4}{3}}=\frac{112}{\frac{4}{3}}
Whakawehea ngā taha e rua o te whārite ki te \frac{4}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{112}{\frac{4}{3}}
Mā te whakawehe ki te \frac{4}{3} ka wetekia te whakareanga ki te \frac{4}{3}.
x=84
Whakawehe 112 ki te \frac{4}{3} mā te whakarea 112 ki te tau huripoki o \frac{4}{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}