Aromātai
\frac{20\sqrt{214305}}{3297}\approx 2.808194603
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{16\times 1625}{21\times 157}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\sqrt{\frac{26000}{21\times 157}}
Whakareatia te 16 ki te 1625, ka 26000.
\sqrt{\frac{26000}{3297}}
Whakareatia te 21 ki te 157, ka 3297.
\frac{\sqrt{26000}}{\sqrt{3297}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{26000}{3297}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{26000}}{\sqrt{3297}}.
\frac{20\sqrt{65}}{\sqrt{3297}}
Tauwehea te 26000=20^{2}\times 65. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 65} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{65}. Tuhia te pūtakerua o te 20^{2}.
\frac{20\sqrt{65}\sqrt{3297}}{\left(\sqrt{3297}\right)^{2}}
Whakangāwaritia te tauraro o \frac{20\sqrt{65}}{\sqrt{3297}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3297}.
\frac{20\sqrt{65}\sqrt{3297}}{3297}
Ko te pūrua o \sqrt{3297} ko 3297.
\frac{20\sqrt{214305}}{3297}
Hei whakarea \sqrt{65} me \sqrt{3297}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}