Aromātai
\frac{\sqrt{474874446}}{17898}\approx 1.217544649
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1523}{1256}\times \frac{2648}{2166}}
Whakahekea te hautanga \frac{3046}{2512} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{1523}{1256}\times \frac{1324}{1083}}
Whakahekea te hautanga \frac{2648}{2166} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\sqrt{\frac{1523\times 1324}{1256\times 1083}}
Me whakarea te \frac{1523}{1256} ki te \frac{1324}{1083} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{2016452}{1360248}}
Mahia ngā whakarea i roto i te hautanga \frac{1523\times 1324}{1256\times 1083}.
\sqrt{\frac{504113}{340062}}
Whakahekea te hautanga \frac{2016452}{1360248} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\sqrt{504113}}{\sqrt{340062}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{504113}{340062}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{504113}}{\sqrt{340062}}.
\frac{\sqrt{504113}}{19\sqrt{942}}
Tauwehea te 340062=19^{2}\times 942. Tuhia anō te pūtake rua o te hua \sqrt{19^{2}\times 942} hei hua o ngā pūtake rua \sqrt{19^{2}}\sqrt{942}. Tuhia te pūtakerua o te 19^{2}.
\frac{\sqrt{504113}\sqrt{942}}{19\left(\sqrt{942}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{504113}}{19\sqrt{942}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{942}.
\frac{\sqrt{504113}\sqrt{942}}{19\times 942}
Ko te pūrua o \sqrt{942} ko 942.
\frac{\sqrt{474874446}}{19\times 942}
Hei whakarea \sqrt{504113} me \sqrt{942}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{474874446}}{17898}
Whakareatia te 19 ki te 942, ka 17898.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}