Aromātai
\frac{\sqrt{1808898}}{3640000000000}\approx 3.69492524 \cdot 10^{-10}
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{3\times 6626\times 10^{-34}}{8\times 91\times 10^{-14}\times 2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -28 me te 14 kia riro ai te -14.
\sqrt{\frac{3\times 3313\times 10^{-34}}{2\times 4\times 91\times 10^{-14}}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\sqrt{\frac{3\times 3313}{2\times 4\times 91\times 10^{20}}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\sqrt{\frac{9939}{2\times 4\times 91\times 10^{20}}}
Whakareatia te 3 ki te 3313, ka 9939.
\sqrt{\frac{9939}{8\times 91\times 10^{20}}}
Whakareatia te 2 ki te 4, ka 8.
\sqrt{\frac{9939}{728\times 10^{20}}}
Whakareatia te 8 ki te 91, ka 728.
\sqrt{\frac{9939}{728\times 100000000000000000000}}
Tātaihia te 10 mā te pū o 20, kia riro ko 100000000000000000000.
\sqrt{\frac{9939}{72800000000000000000000}}
Whakareatia te 728 ki te 100000000000000000000, ka 72800000000000000000000.
\frac{\sqrt{9939}}{\sqrt{72800000000000000000000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{9939}{72800000000000000000000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9939}}{\sqrt{72800000000000000000000}}.
\frac{\sqrt{9939}}{20000000000\sqrt{182}}
Tauwehea te 72800000000000000000000=20000000000^{2}\times 182. Tuhia anō te pūtake rua o te hua \sqrt{20000000000^{2}\times 182} hei hua o ngā pūtake rua \sqrt{20000000000^{2}}\sqrt{182}. Tuhia te pūtakerua o te 20000000000^{2}.
\frac{\sqrt{9939}\sqrt{182}}{20000000000\left(\sqrt{182}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{9939}}{20000000000\sqrt{182}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{182}.
\frac{\sqrt{9939}\sqrt{182}}{20000000000\times 182}
Ko te pūrua o \sqrt{182} ko 182.
\frac{\sqrt{1808898}}{20000000000\times 182}
Hei whakarea \sqrt{9939} me \sqrt{182}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{1808898}}{3640000000000}
Whakareatia te 20000000000 ki te 182, ka 3640000000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}