\sqrt{ \frac{ 200 \times 148 \times 200000 }{ 1480 \times 20 \% } }
Aromātai
2000\sqrt{5}\approx 4472.135955
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{29600\times 200000}{1480\times \frac{20}{100}}}
Whakareatia te 200 ki te 148, ka 29600.
\sqrt{\frac{5920000000}{1480\times \frac{20}{100}}}
Whakareatia te 29600 ki te 200000, ka 5920000000.
\sqrt{\frac{5920000000}{1480\times \frac{1}{5}}}
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\sqrt{\frac{5920000000}{\frac{1480}{5}}}
Whakareatia te 1480 ki te \frac{1}{5}, ka \frac{1480}{5}.
\sqrt{\frac{5920000000}{296}}
Whakawehea te 1480 ki te 5, kia riro ko 296.
\sqrt{20000000}
Whakawehea te 5920000000 ki te 296, kia riro ko 20000000.
2000\sqrt{5}
Tauwehea te 20000000=2000^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2000^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2000^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2000^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}