Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{2\times 40}{0.9\times 3.14}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\sqrt{\frac{80}{0.9\times 3.14}}
Whakareatia te 2 ki te 40, ka 80.
\sqrt{\frac{80}{2.826}}
Whakareatia te 0.9 ki te 3.14, ka 2.826.
\sqrt{\frac{80000}{2826}}
Whakarohaina te \frac{80}{2.826} mā te whakarea i te taurunga me te tauraro ki te 1000.
\sqrt{\frac{40000}{1413}}
Whakahekea te hautanga \frac{80000}{2826} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{40000}}{\sqrt{1413}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{40000}{1413}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{40000}}{\sqrt{1413}}.
\frac{200}{\sqrt{1413}}
Tātaitia te pūtakerua o 40000 kia tae ki 200.
\frac{200}{3\sqrt{157}}
Tauwehea te 1413=3^{2}\times 157. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 157} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{157}. Tuhia te pūtakerua o te 3^{2}.
\frac{200\sqrt{157}}{3\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{200}{3\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{200\sqrt{157}}{3\times 157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{200\sqrt{157}}{471}
Whakareatia te 3 ki te 157, ka 471.