Aromātai
\frac{200\sqrt{157}}{471}\approx 5.32057923
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\sqrt{ \frac{ 2 \times 200 }{ 0.9 \times 5 \times 3.14 } }
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{2\times 40}{0.9\times 3.14}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\sqrt{\frac{80}{0.9\times 3.14}}
Whakareatia te 2 ki te 40, ka 80.
\sqrt{\frac{80}{2.826}}
Whakareatia te 0.9 ki te 3.14, ka 2.826.
\sqrt{\frac{80000}{2826}}
Whakarohaina te \frac{80}{2.826} mā te whakarea i te taurunga me te tauraro ki te 1000.
\sqrt{\frac{40000}{1413}}
Whakahekea te hautanga \frac{80000}{2826} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{40000}}{\sqrt{1413}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{40000}{1413}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{40000}}{\sqrt{1413}}.
\frac{200}{\sqrt{1413}}
Tātaitia te pūtakerua o 40000 kia tae ki 200.
\frac{200}{3\sqrt{157}}
Tauwehea te 1413=3^{2}\times 157. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 157} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{157}. Tuhia te pūtakerua o te 3^{2}.
\frac{200\sqrt{157}}{3\left(\sqrt{157}\right)^{2}}
Whakangāwaritia te tauraro o \frac{200}{3\sqrt{157}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{157}.
\frac{200\sqrt{157}}{3\times 157}
Ko te pūrua o \sqrt{157} ko 157.
\frac{200\sqrt{157}}{471}
Whakareatia te 3 ki te 157, ka 471.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}