Aromātai
\frac{2\sqrt{9117785}}{69249}\approx 0.087208971
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{17380}{2285217}}
Whakareatia te 5067 ki te 451, ka 2285217.
\sqrt{\frac{1580}{207747}}
Whakahekea te hautanga \frac{17380}{2285217} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
\frac{\sqrt{1580}}{\sqrt{207747}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1580}{207747}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1580}}{\sqrt{207747}}.
\frac{2\sqrt{395}}{\sqrt{207747}}
Tauwehea te 1580=2^{2}\times 395. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 395} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{395}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{395}}{3\sqrt{23083}}
Tauwehea te 207747=3^{2}\times 23083. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 23083} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{23083}. Tuhia te pūtakerua o te 3^{2}.
\frac{2\sqrt{395}\sqrt{23083}}{3\left(\sqrt{23083}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{395}}{3\sqrt{23083}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{23083}.
\frac{2\sqrt{395}\sqrt{23083}}{3\times 23083}
Ko te pūrua o \sqrt{23083} ko 23083.
\frac{2\sqrt{9117785}}{3\times 23083}
Hei whakarea \sqrt{395} me \sqrt{23083}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{9117785}}{69249}
Whakareatia te 3 ki te 23083, ka 69249.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}