Aromātai
\frac{375000000\sqrt{40254016904374002}}{61550484563263}\approx 1222.37484406
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1500 \cdot 981}{0.984807753012208}}
Evaluate trigonometric functions in the problem
\sqrt{\frac{1471500}{0.984807753012208}}
Whakareatia te 1500 ki te 981, ka 1471500.
\sqrt{\frac{1471500000000000000000}{984807753012208}}
Whakarohaina te \frac{1471500}{0.984807753012208} mā te whakarea i te taurunga me te tauraro ki te 1000000000000000.
\sqrt{\frac{91968750000000000000}{61550484563263}}
Whakahekea te hautanga \frac{1471500000000000000000}{984807753012208} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
\frac{\sqrt{91968750000000000000}}{\sqrt{61550484563263}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{91968750000000000000}{61550484563263}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{91968750000000000000}}{\sqrt{61550484563263}}.
\frac{375000000\sqrt{654}}{\sqrt{61550484563263}}
Tauwehea te 91968750000000000000=375000000^{2}\times 654. Tuhia anō te pūtake rua o te hua \sqrt{375000000^{2}\times 654} hei hua o ngā pūtake rua \sqrt{375000000^{2}}\sqrt{654}. Tuhia te pūtakerua o te 375000000^{2}.
\frac{375000000\sqrt{654}\sqrt{61550484563263}}{\left(\sqrt{61550484563263}\right)^{2}}
Whakangāwaritia te tauraro o \frac{375000000\sqrt{654}}{\sqrt{61550484563263}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{61550484563263}.
\frac{375000000\sqrt{654}\sqrt{61550484563263}}{61550484563263}
Ko te pūrua o \sqrt{61550484563263} ko 61550484563263.
\frac{375000000\sqrt{40254016904374002}}{61550484563263}
Hei whakarea \sqrt{654} me \sqrt{61550484563263}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}