Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{13}{10}\times \frac{20}{7}}
Whakawehe \frac{13}{10} ki te \frac{7}{20} mā te whakarea \frac{13}{10} ki te tau huripoki o \frac{7}{20}.
\sqrt{\frac{13\times 20}{10\times 7}}
Me whakarea te \frac{13}{10} ki te \frac{20}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\sqrt{\frac{260}{70}}
Mahia ngā whakarea i roto i te hautanga \frac{13\times 20}{10\times 7}.
\sqrt{\frac{26}{7}}
Whakahekea te hautanga \frac{260}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{\sqrt{26}}{\sqrt{7}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{26}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{26}}{\sqrt{7}}.
\frac{\sqrt{26}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{26}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{26}\sqrt{7}}{7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{182}}{7}
Hei whakarea \sqrt{26} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.