Aromātai
\frac{\sqrt{3}}{9}\approx 0.19245009
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1}{27}}
Whakahekea te hautanga \frac{125}{3375} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
\frac{\sqrt{1}}{\sqrt{27}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{27}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{27}}.
\frac{1}{\sqrt{27}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{1}{3\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}}{3\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}}{9}
Whakareatia te 3 ki te 3, ka 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}