Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\sqrt{\frac{1.6\times 4\times 8.85\times 11.9}{0.889}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\sqrt{\frac{6.4\times 8.85\times 11.9}{0.889}}
Whakareatia te 1.6 ki te 4, ka 6.4.
\sqrt{\frac{56.64\times 11.9}{0.889}}
Whakareatia te 6.4 ki te 8.85, ka 56.64.
\sqrt{\frac{674.016}{0.889}}
Whakareatia te 56.64 ki te 11.9, ka 674.016.
\sqrt{\frac{674016}{889}}
Whakarohaina te \frac{674.016}{0.889} mā te whakarea i te taurunga me te tauraro ki te 1000.
\sqrt{\frac{96288}{127}}
Whakahekea te hautanga \frac{674016}{889} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{\sqrt{96288}}{\sqrt{127}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{96288}{127}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{96288}}{\sqrt{127}}.
\frac{4\sqrt{6018}}{\sqrt{127}}
Tauwehea te 96288=4^{2}\times 6018. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 6018} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{6018}. Tuhia te pūtakerua o te 4^{2}.
\frac{4\sqrt{6018}\sqrt{127}}{\left(\sqrt{127}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{6018}}{\sqrt{127}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{127}.
\frac{4\sqrt{6018}\sqrt{127}}{127}
Ko te pūrua o \sqrt{127} ko 127.
\frac{4\sqrt{764286}}{127}
Hei whakarea \sqrt{6018} me \sqrt{127}, whakareatia ngā tau i raro i te pūtake rua.