Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{1}}{\sqrt{7}}\sqrt{28}+\sqrt{700}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{7}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{7}}.
\frac{1}{\sqrt{7}}\sqrt{28}+\sqrt{700}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\sqrt{28}+\sqrt{700}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\sqrt{7}}{7}\sqrt{28}+\sqrt{700}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{7}}{7}\times 2\sqrt{7}+\sqrt{700}
Tauwehea te 28=2^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 7} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{7}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{7}\times 2}{7}\sqrt{7}+\sqrt{700}
Tuhia te \frac{\sqrt{7}}{7}\times 2 hei hautanga kotahi.
\frac{\sqrt{7}\times 2\sqrt{7}}{7}+\sqrt{700}
Tuhia te \frac{\sqrt{7}\times 2}{7}\sqrt{7} hei hautanga kotahi.
\frac{\sqrt{7}\times 2\sqrt{7}}{7}+10\sqrt{7}
Tauwehea te 700=10^{2}\times 7. Tuhia anō te pūtake rua o te hua \sqrt{10^{2}\times 7} hei hua o ngā pūtake rua \sqrt{10^{2}}\sqrt{7}. Tuhia te pūtakerua o te 10^{2}.
\frac{\sqrt{7}\times 2\sqrt{7}}{7}+\frac{7\times 10\sqrt{7}}{7}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 10\sqrt{7} ki te \frac{7}{7}.
\frac{\sqrt{7}\times 2\sqrt{7}+7\times 10\sqrt{7}}{7}
Tā te mea he rite te tauraro o \frac{\sqrt{7}\times 2\sqrt{7}}{7} me \frac{7\times 10\sqrt{7}}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14+70\sqrt{7}}{7}
Mahia ngā whakarea i roto o \sqrt{7}\times 2\sqrt{7}+7\times 10\sqrt{7}.