Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1}{5}\left(2^{2}+\left(32126-32123\right)^{2}+\left(32121-32123\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tangohia te 32123 i te 32125, ka 2.
\sqrt{\frac{1}{5}\left(4+\left(32126-32123\right)^{2}+\left(32121-32123\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\sqrt{\frac{1}{5}\left(4+3^{2}+\left(32121-32123\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tangohia te 32123 i te 32126, ka 3.
\sqrt{\frac{1}{5}\left(4+9+\left(32121-32123\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\sqrt{\frac{1}{5}\left(13+\left(32121-32123\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tāpirihia te 4 ki te 9, ka 13.
\sqrt{\frac{1}{5}\left(13+\left(-2\right)^{2}+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tangohia te 32123 i te 32121, ka -2.
\sqrt{\frac{1}{5}\left(13+4+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\sqrt{\frac{1}{5}\left(17+\left(32124-32123\right)^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tāpirihia te 13 ki te 4, ka 17.
\sqrt{\frac{1}{5}\left(17+1^{2}+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tangohia te 32123 i te 32124, ka 1.
\sqrt{\frac{1}{5}\left(17+1+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\sqrt{\frac{1}{5}\left(18+\left(32122-32123\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tāpirihia te 17 ki te 1, ka 18.
\sqrt{\frac{1}{5}\left(18+\left(-1\right)^{2}+\left(32122-32123\right)^{2}\right)}
Tangohia te 32123 i te 32122, ka -1.
\sqrt{\frac{1}{5}\left(18+1+\left(32122-32123\right)^{2}\right)}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\sqrt{\frac{1}{5}\left(19+\left(32122-32123\right)^{2}\right)}
Tāpirihia te 18 ki te 1, ka 19.
\sqrt{\frac{1}{5}\left(19+\left(-1\right)^{2}\right)}
Tangohia te 32123 i te 32122, ka -1.
\sqrt{\frac{1}{5}\left(19+1\right)}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\sqrt{\frac{1}{5}\times 20}
Tāpirihia te 19 ki te 1, ka 20.
\sqrt{4}
Whakareatia te \frac{1}{5} ki te 20, ka 4.
2
Tātaitia te pūtakerua o 4 kia tae ki 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}