Aromātai
5
Tauwehe
5
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{1}{\frac{1}{9}}+\frac{1}{2^{-4}}}
Tātaihia te 3 mā te pū o -2, kia riro ko \frac{1}{9}.
\sqrt{1\times 9+\frac{1}{2^{-4}}}
Whakawehe 1 ki te \frac{1}{9} mā te whakarea 1 ki te tau huripoki o \frac{1}{9}.
\sqrt{9+\frac{1}{2^{-4}}}
Whakareatia te 1 ki te 9, ka 9.
\sqrt{9+\frac{1}{\frac{1}{16}}}
Tātaihia te 2 mā te pū o -4, kia riro ko \frac{1}{16}.
\sqrt{9+1\times 16}
Whakawehe 1 ki te \frac{1}{16} mā te whakarea 1 ki te tau huripoki o \frac{1}{16}.
\sqrt{9+16}
Whakareatia te 1 ki te 16, ka 16.
\sqrt{25}
Tāpirihia te 9 ki te 16, ka 25.
5
Tātaitia te pūtakerua o 25 kia tae ki 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}