Aromātai
\frac{\sqrt{37463}}{2}\approx 96.776805072
Tohaina
Kua tāruatia ki te papatopenga
\sqrt{\frac{\left(-125\right)^{2}+\left(12-136\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tangohia te 136 i te 11, ka -125.
\sqrt{\frac{15625+\left(12-136\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tātaihia te -125 mā te pū o 2, kia riro ko 15625.
\sqrt{\frac{15625+\left(-124\right)^{2}+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tangohia te 136 i te 12, ka -124.
\sqrt{\frac{15625+15376+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tātaihia te -124 mā te pū o 2, kia riro ko 15376.
\sqrt{\frac{31001+\left(14-136\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tāpirihia te 15625 ki te 15376, ka 31001.
\sqrt{\frac{31001+\left(-122\right)^{2}+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tangohia te 136 i te 14, ka -122.
\sqrt{\frac{31001+14884+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tātaihia te -122 mā te pū o 2, kia riro ko 14884.
\sqrt{\frac{45885+\left(15-136\right)^{2}+\left(16-136\right)^{2}}{8}}
Tāpirihia te 31001 ki te 14884, ka 45885.
\sqrt{\frac{45885+\left(-121\right)^{2}+\left(16-136\right)^{2}}{8}}
Tangohia te 136 i te 15, ka -121.
\sqrt{\frac{45885+14641+\left(16-136\right)^{2}}{8}}
Tātaihia te -121 mā te pū o 2, kia riro ko 14641.
\sqrt{\frac{60526+\left(16-136\right)^{2}}{8}}
Tāpirihia te 45885 ki te 14641, ka 60526.
\sqrt{\frac{60526+\left(-120\right)^{2}}{8}}
Tangohia te 136 i te 16, ka -120.
\sqrt{\frac{60526+14400}{8}}
Tātaihia te -120 mā te pū o 2, kia riro ko 14400.
\sqrt{\frac{74926}{8}}
Tāpirihia te 60526 ki te 14400, ka 74926.
\sqrt{\frac{37463}{4}}
Whakahekea te hautanga \frac{74926}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\sqrt{37463}}{\sqrt{4}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{37463}{4}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{37463}}{\sqrt{4}}.
\frac{\sqrt{37463}}{2}
Tātaitia te pūtakerua o 4 kia tae ki 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}