Whakaoti mō x
x=\frac{3^{\frac{2}{3}}}{3}\approx 0.693361274
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt[3]{9}x\right)^{2}=\left(\sqrt{3x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt[3]{9}\right)^{2}x^{2}=\left(\sqrt{3x}\right)^{2}
Whakarohaina te \left(\sqrt[3]{9}x\right)^{2}.
\left(\sqrt[3]{9}\right)^{2}x^{2}=3x
Tātaihia te \sqrt{3x} mā te pū o 2, kia riro ko 3x.
\left(\sqrt[3]{9}\right)^{2}x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x\left(\left(\sqrt[3]{9}\right)^{2}x-3\right)=0
Tauwehea te x.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
Hei kimi otinga whārite, me whakaoti te x=0 me te \left(\sqrt[3]{9}\right)^{2}x-3=0.
\sqrt[3]{9}\times 0=\sqrt{3\times 0}
Whakakapia te 0 mō te x i te whārite \sqrt[3]{9}x=\sqrt{3x}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt[3]{9}\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}=\sqrt{3\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}}
Whakakapia te \frac{3}{\left(\sqrt[3]{9}\right)^{2}} mō te x i te whārite \sqrt[3]{9}x=\sqrt{3x}.
3\times 9^{-\frac{1}{3}}=3\times 9^{-\frac{1}{3}}
Whakarūnātia. Ko te uara x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}} kua ngata te whārite.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
Rārangihia ngā rongoā katoa o \sqrt[3]{9}x=\sqrt{3x}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}