Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt[3]{9}x\right)^{2}=\left(\sqrt{3x}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
\left(\sqrt[3]{9}\right)^{2}x^{2}=\left(\sqrt{3x}\right)^{2}
Whakarohaina te \left(\sqrt[3]{9}x\right)^{2}.
\left(\sqrt[3]{9}\right)^{2}x^{2}=3x
Tātaihia te \sqrt{3x} mā te pū o 2, kia riro ko 3x.
\left(\sqrt[3]{9}\right)^{2}x^{2}-3x=0
Tangohia te 3x mai i ngā taha e rua.
x\left(\left(\sqrt[3]{9}\right)^{2}x-3\right)=0
Tauwehea te x.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
Hei kimi otinga whārite, me whakaoti te x=0 me te \left(\sqrt[3]{9}\right)^{2}x-3=0.
\sqrt[3]{9}\times 0=\sqrt{3\times 0}
Whakakapia te 0 mō te x i te whārite \sqrt[3]{9}x=\sqrt{3x}.
0=0
Whakarūnātia. Ko te uara x=0 kua ngata te whārite.
\sqrt[3]{9}\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}=\sqrt{3\times \frac{3}{\left(\sqrt[3]{9}\right)^{2}}}
Whakakapia te \frac{3}{\left(\sqrt[3]{9}\right)^{2}} mō te x i te whārite \sqrt[3]{9}x=\sqrt{3x}.
3\times 9^{-\frac{1}{3}}=3\times 9^{-\frac{1}{3}}
Whakarūnātia. Ko te uara x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}} kua ngata te whārite.
x=0 x=\frac{3}{\left(\sqrt[3]{9}\right)^{2}}
Rārangihia ngā rongoā katoa o \sqrt[3]{9}x=\sqrt{3x}.