Aromātai
11
Tauwehe
11
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt[4]{121}\right)^{2}
Whakareatia te \sqrt[4]{121} ki te \sqrt[4]{121}, ka \left(\sqrt[4]{121}\right)^{2}.
\sqrt[4]{121}=\sqrt[4]{11^{2}}=11^{\frac{2}{4}}=11^{\frac{1}{2}}=\sqrt{11}
Me tuhi anō te \sqrt[4]{121} ko \sqrt[4]{11^{2}}. Tahuritia i te āhua pūtake ki te āhua taupū ka whakakore i te 2 i te taupū. Tahuri anō ki te āhua pūtake.
\left(\sqrt{11}\right)^{2}
Me kōkuhu anō te uara i whiwhi i te kīanga.
11
Ko te pūrua o \sqrt{11} ko 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}