Aromātai
\frac{11}{6}\approx 1.833333333
Tauwehe
\frac{11}{2 \cdot 3} = 1\frac{5}{6} = 1.8333333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{3}+\left(\frac{2}{3}\right)^{-1}-0\times 0\times 0\times 2\times 10^{3}
Tātaitia te \sqrt[4]{\frac{1}{81}} kia tae ki \frac{1}{3}.
\frac{1}{3}+\frac{3}{2}-0\times 0\times 0\times 2\times 10^{3}
Tātaihia te \frac{2}{3} mā te pū o -1, kia riro ko \frac{3}{2}.
\frac{11}{6}-0\times 0\times 0\times 2\times 10^{3}
Tāpirihia te \frac{1}{3} ki te \frac{3}{2}, ka \frac{11}{6}.
\frac{11}{6}-0\times 0\times 2\times 10^{3}
Whakareatia te 0 ki te 0, ka 0.
\frac{11}{6}-0\times 2\times 10^{3}
Whakareatia te 0 ki te 0, ka 0.
\frac{11}{6}-0\times 10^{3}
Whakareatia te 0 ki te 2, ka 0.
\frac{11}{6}-0\times 1000
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{11}{6}-0
Whakareatia te 0 ki te 1000, ka 0.
\frac{11}{6}
Tangohia te 0 i te \frac{11}{6}, ka \frac{11}{6}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}