Aromātai
-2
Tauwehe
-2
Tohaina
Kua tāruatia ki te papatopenga
\sqrt[3]{0}-\sqrt{\frac{3\times 16+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Whakareatia te 0 ki te 125, ka 0.
0-\sqrt{\frac{3\times 16+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Tātaitia te \sqrt[3]{0} kia tae ki 0.
0-\sqrt{\frac{48+1}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Whakareatia te 3 ki te 16, ka 48.
0-\sqrt{\frac{49}{16}}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Tāpirihia te 48 ki te 1, ka 49.
0-\frac{7}{4}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Tuhia anō te pūtake rua o te whakawehenga \frac{49}{16} hei whakawehenga o ngā pūtake rua \frac{\sqrt{49}}{\sqrt{16}}. Tuhia te pūtakerua o te taurunga me te tauraro.
-\frac{7}{4}+\sqrt[3]{\left(1-\frac{7}{8}\right)^{2}}-|-\frac{1}{2}|
Tangohia te \frac{7}{4} i te 0, ka -\frac{7}{4}.
-\frac{7}{4}+\sqrt[3]{\left(\frac{1}{8}\right)^{2}}-|-\frac{1}{2}|
Tangohia te \frac{7}{8} i te 1, ka \frac{1}{8}.
-\frac{7}{4}+\sqrt[3]{\frac{1}{64}}-|-\frac{1}{2}|
Tātaihia te \frac{1}{8} mā te pū o 2, kia riro ko \frac{1}{64}.
-\frac{7}{4}+\frac{1}{4}-|-\frac{1}{2}|
Tātaitia te \sqrt[3]{\frac{1}{64}} kia tae ki \frac{1}{4}.
-\frac{3}{2}-|-\frac{1}{2}|
Tāpirihia te -\frac{7}{4} ki te \frac{1}{4}, ka -\frac{3}{2}.
-\frac{3}{2}-\frac{1}{2}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o -\frac{1}{2} ko \frac{1}{2}.
-2
Tangohia te \frac{1}{2} i te -\frac{3}{2}, ka -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}